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Abstract
We define the elliptic quantum group Eτ,η(so3) and the transfer matrix
corresponding to its simplest highest weight representation. We use the Bethe
ansatz method to construct the creation operators as polynomials of the Lax
matrix elements expressed through a recurrence relation. We give common
eigenvectors and eigenvalues of the family of commuting transfer matrices.

PACS numbers: 02.30.Ik, 02.20.Vw, 05.50.+q
Mathematics Subject Classification: 82B23, 81R12, 81R50

1. Introduction

In this paper, we report new results on the application of algebraic Bethe ansatz to the
elliptic (or dynamical) quantum group Eτ,η(so3). The elliptic quantum group is the algebraic
structure associated with elliptic solutions of the star-triangle relation. This equation appears
in interaction-round-a-face models in statistical mechanics. As was shown by Felder [4], this
structure is also related to the Knizhnik–Zamolodchikov–Bernard equation of conformal field
theory on tori. Moreover, in a different direction, with each solution of the (see [9]) star-
triangle relation a dynamical R-matrix can be associated. This R-matrix, in turn, will define
an algebra similar to quantum groups appearing in the quantum inverse scattering method
(QISM); it is actually a quasi-Hopf deformation of the more familiar quantum group structure
[10]. Despite all the differences, this new structure preserves a prominent feature of quantum
groups: a tensor product of representations can be defined.

The adjective dynamical refers to the fact that the R-matrix appearing in these structures
contains a parameter which in the classical limit will be interpreted as the position coordinate
on the phase space of a classical system and the resulting classical r-matrix will depend on
it. In the quantum setting, apart from the appearance of this extra parameter the Yang–Baxter
equation (YBE) is also deformed. At the technical level, the main difference between usual
quantum groups and the one we are about to describe lies not so much in the elliptic nature of
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the appearing functions as rather in the introduction of the extra ‘dynamical’ parameter and
the corresponding deformation of the YBE.

In QISM, the physically interesting quantity is the transfer matrix. The Hamiltonian of
the model and other observables are derived from it. The knowledge of its spectrum is thus
essential. Different kinds of methods under the federating name of Bethe ansatz have been
developed to calculate the eigenvalues of the transfer matrix [3, 11, 12]. The question whether
the algebraic Bethe ansatz (ABA) technique can be applied to transfer matrices appearing
in the context of dynamical quantum groups has received an affirmative answer from Felder
and Varchenko [7, 5]. They showed how to implement ABA for the elliptic quantum group
Eτ,η(sl2); they also showed its applications to IRF models and the Lamé equation. Later,
for the Eτ,η(sln) elliptic quantum group the nested Bethe ansatz method was used [2, 8]
and a relation to Ruijsenaars–Schneider [8] and quantum Calogero–Moser Hamiltonians was
established [1].

In the first section of this paper we introduce the basic definitions of dynamical R-matrix,
Yang–Baxter equation, representations, operator algebra and commuting transfer matrices. We
define elements �n in the operator algebra which have the necessary symmetry properties to be
the creation operators of the corresponding Bethe states. As it turns out, the creation operators
are not simple functions of the Lax matrix entries, unlike in [5], but they are complicated
polynomials of three generators A1(u), B1(u), B2(u) in the elliptic operator algebra. We give
the recurrence relation which defines the creation operators. Moreover, we fully implement
the algebraic Bethe ansatz on the simplest example of highest weight module. That is we
calculate the action of the transfer matrix on the Bethe vectors, and from the vanishing of the
unwanted terms we derive the Bethe equations. We also give the explicit formulae for the
corresponding eigenvalues.

2. Representations of Eτ ,η(so3) and transfer matrices

2.1. Definitions

Let us first recall the basic definitions which will enter our construction. First, we fix two
complex numbers τ, η such that Im(τ) > 0. The central object in this paper is the R-matrix
R(q, u) which depends on two arguments q, u ∈ C: the first one is referred to as the dynamical
parameter; the second one is called the spectral parameter. The elements of the R-matrix are
written in terms of Jacobi’s theta function:

ϑ(u) = −
∑
j∈Z

exp

(
π i

(
j +

1

2

)2

τ + 2π i

(
j +

1

2

)(
u +

1

2

))
.

This function has two essential properties. It is quasiperiodic:

ϑ(u + 1) = −ϑ(u); ϑ(u + τ) = −e−iτ−2iuϑ(u),

and it verifies the identity

ϑ(u + x)ϑ(u − x)ϑ(v + y)ϑ(v − y) = ϑ(u + y)ϑ(u − y)ϑ(v + x)ϑ(v − x)

+ ϑ(u + v)ϑ(u − v)ϑ(x + y)ϑ(x − y).

The entries of the R-matrix are written in terms of the following functions:

g(u) = ϑ(u − η)ϑ(u − 2η)

ϑ(η)ϑ(2η)
α(q1, q2, u) = ϑ(η − u)ϑ(q12 − u)

ϑ(η)ϑ(q12)

β(q1, q2, u) = ϑ(η − u)ϑ(u)ϑ(q12 − 2η)

ϑ(−2η)ϑ(η)ϑ(q12)
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ε(q, u)= ϑ(η + u)ϑ(2η − u)

ϑ(η)ϑ(2η)
− ϑ(u)ϑ(η − u)

ϑ(η)ϑ(2η)

(
ϑ(q + η)ϑ(q − 2η)

ϑ(q − η)ϑ(q)
+

ϑ(q − η)ϑ(q + 2η)

ϑ(q + η)ϑ(q)

)
γ (q1, q2, u) = ϑ(u)ϑ(q1 + q2 − η − u)ϑ(q1 − 2η)ϑ(q2 + η)

ϑ(η)ϑ(q1 + q2 − 2η)ϑ(q1 + η)ϑ(q2)

δ(q, u) = ϑ(u − q)ϑ(u − q + η)

ϑ(q)ϑ(q − η)
.

The R-matrix itself will act on the tensor product V ⊗ V , where V is a three-dimensional
complex vector space with the standard basis {e1, e2, e3}. The matrix units Eij are defined
in the usual way: Eij ek = δjkei . We will also need the following diagonal matrix later on:
h = E11 − E33.

Now we are ready to write the explicit form of the R-matrix:

R(q, u) = g(u)E11 ⊗ E11 + g(u)E33 ⊗ E33 + ε(q, u)E22 ⊗ E22 + α(η, q, u)E12 ⊗ E21

+ α(q, η, u)E21 ⊗ E12 + α(−q, η, u)E23 ⊗ E32 + α(η,−q, u)E32 ⊗ E23

+ β(η, q, u)E11 ⊗ E22 + β(q, η, u)E22 ⊗ E11 + β(−q, η, u)E22 ⊗ E33

+ β(η,−q, u)E33 ⊗ E22 + γ (−q, q, u)E11 ⊗ E33 + γ (−q, η, u)E12 ⊗ E32

− γ (η, q, u)E21 ⊗ E23 + γ (q,−q, u)E33 ⊗ E11 + γ (q, η, u)E32 ⊗ E12

− γ (η,−q, u)E23 ⊗ E21 + δ(q, u)E31 ⊗ E13 + δ(−q, u)E13 ⊗ E31.

This R-matrix also enjoys the unitarity property

R12(q, u)R21(q,−u) = g(u)g(−u)11, (1)

and it is of zero weight:

[h ⊗ 11 + 11 ⊗ h,R12(q, u)] = 0 (h ∈ h).

The R-matrix also obeys the dynamical quantum Yang–Baxter equation (DYBE) in
End(V ⊗ V ⊗ V ):

R12(q − 2ηh3, u12)R13(q, u1)R23(q − 2ηh1, u2) = R23(q, u2)R13(q − 2ηh2, u1)R12(q, u12),

where the ‘dynamical shift’ notation has the usual meaning:

R12(q − 2ηh3, u) · v1 ⊗ v2 ⊗ v3 = (R12(q − 2ηλ, u)v1 ⊗ v2) ⊗ v3 (2)

whenever hv3 = λv3. Shifts on other spaces are defined in an analogous manner.
Let us also describe a more intuitive way of looking at this shift. Define first the shift

operator acting on functions of the dynamical parameter:

exp(2η∂q)f (q) = f (q + 2η) exp(2η∂q).

Then equation (2) can also be written in the following form:

R12(q − 2ηh3, u) = exp(−2ηh3∂q)R12(q, u) exp(2ηh3∂q);
in the following we will use whichever definition is the fittest for the particular point in our
calculation.

2.2. Representation; operator algebra

Now we describe the notion of representation of (or module over) Eτ,η(so3). It is a pair
(L(q, u),W), where W is a diagonalizable h-module, that is, W is a direct sum of the weight
subspaces W = ⊕λ∈CW [λ] and L(q, u) is an operator in End(V ⊗ W) obeying

R12(q − 2ηh3, u12)L13(q, u1)L23(q − 2ηh1, u2) = L23(q, u2)L13(q − 2ηh2, u1)R12(q, u12),
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L(q, u) is also of zero weight:

[hV ⊗ 11 + 11 ⊗ hW ,LV,W (q, u)] = 0 (h ∈ h),

where the subscripts remind the careful reader that in this formula h might act in a different
way on spaces W and V .

An example is given immediately by W = V and L(q, u) = R(q, u − z) which is
called the fundamental representation with evaluation point z and is denoted by V (z). A
tensor product of representations can also be defined which corresponds to the existence of
a coproduct-like structure at the abstract algebraic level. Let (L(q, u),X) and (L′(q, u), Y )

be two Eτ,η(so3) modules, then L1X(q − 2ηhY , u)L1Y (q, u),X ⊗ Y is a representation of
Eτ,η(so3) on X ⊗ Y endowed, of course, with the tensor product h-module structure.

The operator L is reminiscent of the quantum Lax matrix in the FRT formulation of the
quantum inverse scattering method, although it obeys a different exchange relation; therefore
we will also call it a Lax matrix. This allows us to view the L as a matrix with operator-valued
entries.

Inspired by that interpretation, for any module over Eτ,η(so3) we define the corresponding
operator algebra of finite difference operators. Let us take an arbitrary representation
L(q, u) ∈ End(V ⊗ W). The elements of the operator algebra corresponding to this
representation will act on the space Fun(W) of meromorphic functions of q with values
in W . Namely, let L ∈ End(V ⊗ Fun(W)) be the operator defined as

L(u) =
A1(u) B1(u) B2(u)

C1(u) A2(u) B3(u)

C2(u) C3(u) A3(u)

 = L(q, u) e−2ηh∂q . (3)

We can view it as a matrix with entries in End(Fun(W)): it follows from equation (3) that L
verifies

R12(q − 2ηh, u12)L1W(q, u1)L2W(q, u2) = L2W(q, u2)L1W(q, u1)R̃12(q, u12), (4)

with R̃12(q, u) := exp(2η(h1 + h2)∂q)R12(q, u) exp(−2η(h1 + h2)∂q).
The zero weight condition on L yields the relations

[h,Ai] = 0; [h,Bj ] = −Bj (j = 1, 3), [h,B2] = −2B2

[h,Cj ] = Cj (j = 1, 3), [h,C2] = 2C2

so Bis act as lowering and Cis as raising operators. From definition (3) one can derive the
action of the operator algebra generators on functions

A1(u)f (q) = f (q − 2η)A1(u);B1(u)f (q) = f (q)B1(u); B2(u)f (q) = f (q + 2η)B2(u)

and analogously for the other generators. We display here those commutation relations which
are necessary for the construction of the Bethe vectors; the remaining ones can be extracted
from (4):

B1(u1)B1(u2) = ω21

(
B1(u2)B1(u1) − 1

y21(q)
B2(u2)A1(u1)

)
+

1

y12(q)
B2(u1)A1(u2)

A1(u1)B1(u2) = z21(q)B1(u2)A1(u1) − α21(η, q)

β21(q, η)
B1(u1)A1(u2)

A1(u1)B2(u2) = 1

γ21(q,−q)
(g21B2(u2)A1(u2) + γ21(η,−q)B1(u1)B1(u2)

− δ21(−q)B2(u1)A1(u1))

B1(u2)B2(u1) = 1

g21
(β21(−q, η)B2(u1)B1(u2) + α21(η,−q)B1(u1)B2(u2))

B2(u2)B1(u1) = 1

g21
(β21(η,−q)B1(u1)B2(u2) + α21(−q, η)B2(u1)B1(u2)),
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where

ω(q, u) = g(u)γ (q,−q, u)

ε(q, u)γ (q,−q, u) + γ (q, η, u)γ (η,−q, u)

y(q, u) = γ (q,−q, u)

γ (q, η, u)
z(q, u) = g(u)

β(q, η, u)

and as usual

y12(q) = y(q, u1 − u2) etc.

Furthermore, the function ω(q, u) is actually independent of q, a property which will prove
important later on, and takes the following simple form:

ω(u) = ϑ(u + η)ϑ(u − 2η)

ϑ(u − η)ϑ(u + 2η)
.

This function also verifies the following property:

ω(u)ω(−u) = 1.

Finally, the following theorem shows how to associate a family of commuting quantities with
a representation of the elliptic quantum group.

Theorem 2.1. Let W be a representation of Eτ,η(so3). Then the transfer matrix defined by
t (u) = T rL̃(u) ∈ End(Fun(W)) preserves the subspace Fun(W)[0] of functions with values
in the zero weight subspace of W . When restricted to this subspace, they commute at different
values of the spectral parameter:

[t (u), t (v)] = 0.

Proof. The proof is analogous to references [1, 6]. �

3. Bethe ansatz

In this section we fix a highest weight module W = V (z1) ⊗ · · · ⊗ V (zn). The vector
|0〉 = e1 ⊗· · ·⊗ e1 ∈ Fun(W) is a highest weight vector of weight n of this module, and every
highest weight vector can be written in the form |�〉 = f (q)|0〉 with a non-zero meromorphic
function f . We have indeed

Ci(u)|�〉 = 0 (i = 1, 2, 3)

showing that |�〉 is a highest weight vector:

A1(u)|�〉 = a1(u)
f (q − 2η)

f (q)
|�〉

A2(u)|�〉 = a2(q, u)|�〉
A3(u)|�〉 = a3(q, u)

f (q + 2η)

f (q)
|�〉,

with the eigenvalues

a1(u) =
n∏

i=1

ϑ(u − zi − η)ϑ(u − zi − 2η)

ϑ(η)ϑ(2η)

a2(q, u) = ϑ(q − 2ηn − η)

ϑ(q − η)

n∏
i=1

ϑ(u − zi − η)ϑ(u − zi)

ϑ(η)ϑ(2η)

a3(q, u) = ϑ(q − 2ηn)ϑ(q − 2ηn + η)

ϑ(q + η)ϑ(q)

n∏
i=1

ϑ(u − zi)ϑ(u − zi + η)

ϑ(η)ϑ(2η)
.
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Note that a1 is independent of q. It is easy to see that the zero weight subspace W [0] is
nontrivial for this module.

In this situation we cannot look for the common eigenvectors of t (u) in the form
�(u1, . . . , un) = B1(u1) . . . B1(un)|�〉 since B1(u)B1(v) �= B1(v)B1(u) and the resulting
Bethe vector would not be symmetric under the interchange of the parameters ui .

Instead, we should be inspired by Tarasov’s implementation of the algebraic Bethe ansatz
to the Izergin–Korepin model [15]. In that case the R-matrix is nondynamical, but has nonzero
entries at the same positions as the dynamical R-matrix considered here. The comparison
suggests that the Bethe operator will contain B1(u1) . . . B1(un) with coefficient 1 but will also
have a ‘correction’ to that expressed in terms of B2(u) and A1(u). It also suggests that the
symmetry under the interchange of spectral parameters is replaced by the property

�n(u1, . . . , un) = ζi+1,i�n(u1, . . . , ui−1, ui+1, ui, ui+2, . . . , un) (i = 1, . . . , n − 1)

with a function ζ to be determined. In the following we give the Bethe creation operator in a
recurrence form and describe its generalized symmetry property.

Definition 3.1. Let �n be defined as the recurrence relation for n � 0:

�n(u1, . . . , un) = B1(u1)�n−1(u2, . . . , un) −
n∑

j=2

∏j−1
k=2 ωjk

y1j (q)

×
n∏

k=2
k �=j

zkj (q + 2η)B2(u1)�n−2(u2, . . . , ûj , . . . , un)A1(uj ),

where �0 = 1;�1(u1) = B1(u1) and the parameter under the hat is omitted.

It may be useful to give explicitly the first three creation operators:

�1(u1) = B1(u1) �2(u1, u2) = B1(u1)B1(u2) − 1

y12(q)
B2(u1)A1(u2)

�3(u1, u2, u3) = B1(u1)B1(u2)B1(u3) − 1

y23(q)
B1(u1)B2(u2)A1(u3)

− z32(q + 2η)

y12(q)
B2(u1)B(u3)A1(u2) − ω32z23(q + 2η)

y13(q)
B2(u1)B1(u2)A1(u3).

The Bethe vector is then not completely symmetric under the interchange of two
neighbouring spectral parameters but verifies the following property instead:

�2(u1, u2) = ω21�2(u2, u1) �3(u1, u2, u3) = ω21�3(u2, u1, u3) = ω32�3(u1, u3, u2).

For general n we prove the following theorem.

Theorem 3.1. �n verifies the following symmetry property:

�n(u1, . . . , un) = ωi+1,i�n(u1, . . . , ui−1, ui+1, ui, ui+2, . . . , un) (i = 1, 2, . . . , n − 1).

(5)

Proof. For the proof we refer to [13]. �

The next step in the application of the Bethe ansatz scheme is the calculation of the action
of the transfer matrix on the Bethe vector. This will yield three kinds of terms. The first part
(usually called wanted terms in the literature) will tell us the eigenvalue of the transfer matrix;
the second part (called unwanted terms) must be annihilated by a careful choice of the spectral
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parameters ui in �n(u1, . . . , un); the vanishing of these unwanted terms is ensured if the ui

are solutions to the so-called Bethe equations. The third part contains terms ending with a
raising operator acting on the pseudovacuum and thus vanishes.

The action of A1(u) on �n is given by

A1(u)�n =
n∏

k=1

zku(q)�nA1(u) +
n∑

j=1

Dj

j−1∏
k=1

ωjkB1(u)�n−1(u1, ûj , un)A1(uj )

+
n∑

l<j

Elj

l−1∏
k=1

ωlk

j−1∏
k=1
k �=l

ωjkB2(u)�n−2(u1, ûl, ûj , un)A1(ul)A1(uj ). (6)

To calculate the first coefficients we expand �n with the help of the recurrence relation, then
use the commutation relations to push A1(u1) to the right. This yields

D1 = −α1u(η, q)

β1u(q, η)

n∏
k=2

zk1(q)

E12 =
(

δ1u(−q)

γ1u(q,−q)y12(q − 2η)
+

z1u(q)α2u(η, q)ωu1

β2u(q, η)yu1(q)

) n∏
k=3

zk1(q + 2η)zk2(q).

The direct calculation of the remaining coefficients is less straightforward. However, the
symmetry of the left-hand side of (6) implies that Dj for j � 1 can be obtained by substitution
u1 � uj in D1 and Elj by the substitution u1 � ul, u2 � uj

The action of A2(u) and A3(u) on �n will also yield terms ending in Ci(u)s.
The action of A2(u) on �n will have the following structure:

A2(u)�n =
n∏

k=1

zuk(q − 2η(k − 1))

ωuk

�nA2(u) +
n∑

j=1

F
(1)
j

j−1∏
k=1

ωjkB1(u)�n−1(u1, ûj , un)A2(uj )

+
n∑

j=1

F
(2)
j

j−1∏
k=1

ωjkB3(u)�n−1(u1, ûj , un)A1(uj )

+
n∑

l<j

G
(1)
lj

l−1∏
k=1

ωlk

j−1∏
k=1
k �=l

ωjkB2(u)�n−2(u1, ûl, ûj , un)A1(ul)A2(uj )

+
n∑

l<j

G
(2)
lj

l−1∏
k=1

ωlk

j−1∏
k=1
k �=l

ωjkB2(u)�n−2(u1, ûl, ûj , un)A1(uj )A2(ul)

+
n∑

l<j

G
(3)
lj

l−1∏
k=1

ωlk

j−1∏
k=1
k �=l

ωjkB2(u)�n−2(u1, ûl, ûj , un)A2(ul)A1(uj )

+ terms ending in C.

We give the coefficients F
(k)
1 and G

(k)
12 ; the remaining ones are obtained by the same

substitution as for A1(u):

F
(1)
1 = −αu1(q, η)

βu1(q, η)

n∏
k=2

z1k(q − 2η(k − 1))

ω1k

F
(2)
1 = 1

yu1(q)

n∏
k=2

zk1(q + 2η)
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G
(1)
12 = 1

yu1(q)

(
zu1(q)αu2(q − 2η, η)

βu2(q − 2η, η)
− αu1(q, η)α12(q − 2η, η)

βu1(q, η)β12(q − 2η, η)

)
×

n∏
k=3

zk1(q + 2η)z2k(q − 2η(k − 1))

ω2k

G
(2)
12 = αu1(q, η)α12(q − 2η, η)

βu1(q, η)yu1(q)β12(q − 2η, η)

n∏
k=3

zk2(q + 2η)z1k(q − 2η(k − 1))

ω1k

G
(3)
12 = αu1(q, η)

βu1(η,−q)

(
zu1(q)

ωu1yu2(q)
− αu1(η,−q)

y12(q)βu1(q, η)

) n∏
k=3

zk2(q + 2η)z1k(q − 2η(k − 2))

ω1k

.

It is instructing to give explicitly the expression of F
(1)
l :

F
(1)
l = −αul(q, η)

βul(q, η)
× ϑ(q − 3η)

ϑ(q − 2ηn − η)

n∏
k=1
k �=l

ϑ(ulk − 2η)

ϑ(ulk)ωlk

.

The action of A3(u) on the Bethe vector is somewhat simpler:

A3(u)�n =
n∏

k=1

βuk(η,−q)

γuk(q − 2η(k − 1),−)
�nA3(u) +

n∑
j=1

Hj

j−1∏
k=1

ωjkB3(u)�n−1(u1, ûj , un)A2(uj )

+
n∑

l<j

Ilj

l−1∏
k=1

ωlk

j−1∏
k=1
k �=l

ωjkB2(u)�n−2(u1, ûl, ûj , un)A2(ul)A2(uj )

+ terms ending in C,

where to save space used the notation γuk(x,−) = γuk(x,−x). We give the coefficients H1

and I12; the rest can be obtained by the substitution of the spectral parameters as before:

H1 = − 1

yu1(q)

∏
k=2

z1k(q − 2η(k − 2))

ω1k

I12 = 1

γu2(q,−q)

(
δu2(q)

y12(q − 2η)
− αu1(q, η)

yu2(q − 2η)

)
×

∏
k=3

z2u(q − 2η(k − 2))z1u(q − 2η(k − 2))

ω1kω2k

.

The next step is to find conditions for the cancellation of the unwanted terms. We write
the action of the transfer matrix in the following form:

t (u)�n|�〉 = ��n|�〉 +
n∑

j=1

K
(1)
j

j−1∏
k=1

ωjkB1(u)�n(u1, ûj , un)|�〉

+
n∑

l<j

K
(2)
lj

l−1∏
k=1

ωlk

j−1∏
k=1
k �=l

ωjkB2(u)�n(u1, ûl, ûj , un)|�〉

+
n∑

j=1

K
(3)
j

j−1∏
k=1

ωjkB3(u)�n(u1, ûj , un)|�〉.
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The general form of the eigenvalue is written as

�(u, {uj }) =
n∏

k=1

zku(q) × a1(q, u)
f (q − 2η)

f (q)
+

n∏
k=1

zuk(q − 2η(k − 1))

ωuk

× a2(q, u)

+
n∏

k=1

βuk(η,−q)

γuk(q − 2η(k − 1),−)
× a3(q, u)

f (q + 2η)

f (q)
.

The condition of cancellation is then K
(1)
j = K

(3)
j = 0 for 1 � j and K

(2)
lj = 0 for 1 � l � j

with the additional requirement that these three different kinds of condition should in fact lead
to the same set of n nonlinear Bethe equations fixing the n parameters of �n.

Let us first consider the coefficient K
(1)
1 :

K
(1)
1 = D1a1(u1)

f (q − 2η)

f (q)
+ F

(1)
1 a2(q, u1).

The condition K
(1)
1 = 0 is then equivalent to

a1(u1)

a2(q, u1)
= f (q)

f (q − 2η)

n∏
k=2

ϑ(uk1 + η)

ϑ(uk1 − η)
× ϑ(q − 3η)n

ϑ(q − η)n−1ϑ(q − 2ηn − η)
. (7)

Now it remains to check that the remaining two conditions lead to the same Bethe equations.
The condition

0 = K
(3)
1 = F

(2)
1 a1(u1)

f (q)

f (q + 2η)
+ H1a2(q + 2η)

yields the same Bethe equation as in (7) thanks to the identity (from the unitarity condition
(1)):

α(η, q, u)

β(q, η, u)
= −α(q, η,−u)

β(q, η,−u)
.

Finally, the cancellation of K
(2)
12 also leads to the same Bethe equation (7) thanks to the

following identity:

0 =
(

δ1u(−q)

γ1u(q,−q)y12(q − 2η)
+

z1u(q)α2u(η, q)ωu1

β2u(q, η)yu1(q)

)
× ϑ(q − 3η)2

+

(
δu1(q)

γu1(q,−q)y12(q − 2η)
− αu1(q, η)

γu1(q,−q)yu2(q − 2η)

)
× ϑ(q − 3η)2

+
1

yu1(q)

(
zu1(q)αu2(q − 2η, η)

βu2(q − 2η, η)
− αu1(q, η)α12(q − 2η, η)

βu1(q, η)β12(q − 2η, η)

)
× ϑ(u21 + η)ϑ(q − 5η)ϑ(q − η)

ϑ(u21 − η)
+

αu1(q, η)α12(q + 2η, η)

βu1(q, η)yu1(q)β12(q − 2η, η)

×ϑ(u12 + η)ϑ(q − 5η)ϑ(q − η)

ϑ(u12 − η)
+

αu1(q, η)

βu1(η,−q)

×
(

zu1(q)

ωu1yu2(q)
− αu1(η,−q)

βu1(q, η)y12(q)

)
× ϑ(u12 + η)ϑ(q − 3η)ϑ(q − η)2

ϑ(u12 − η)ϑ(q + η)
.

Now we fix f (q) so as to ensure that the Bethe equation hence its solutions do not depend
on q. This can be achieved by choosing f (q) = ecqϑ(q −η)n, where c is an arbitrary constant.

The simultaneous vanishing of K
(1)
1 ,K

(3)
1 and K

(2)
12 then leads to the condition

n∏
k=1

ϑ(u1 − zk − 2η)

ϑ(u1 − zk)
= e2cη ×

n∏
k=2

ϑ(u1 − uk − η)

ϑ(u1 − uk + η)
.
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Once again, the symmetry property of the Bethe vector �n allows us to derive easily the
conditions for the remaining uj s by a simple substitution of the spectral parameters. Thus we
obtain the set of Bethe equations

n∏
k=1

ϑ(uj − zk − 2η)

ϑ(uj − zk)
= e2cη ×

n∏
k=1
k �=j

ϑ(uj − uk − η)

ϑ(uj − uk + η)
(j = 1, . . . , n).

Since f (q) is now fixed, we can write the explicit form of the eigenvalues of the transfer
matrix on the module W = V (z1) ⊗ · · · ⊗ V (zn) as a q-independent function of the solutions
of the Bethe equations

�(u, {uj }) = e−2ηc

n∏
k=1

ϑ(u − zk − η)ϑ(u − zk − 2η)ϑ(u − uk + 2η)

ϑ(η)ϑ(2η)ϑ(u − uk)

+
n∏

k=1

ϑ(u − zk − η)ϑ(u − zk)ϑ(u − uk − 2η)

ϑ(η)ϑ(2η)ϑ(u − uk)

+ e2ηc

n∏
k=1

ϑ(u − zk)ϑ(u − zk + η)ϑ(u − uk − η)

ϑ(η)ϑ(2η)ϑ(u − uk + η)
.

4. Conclusions

We showed in this paper that the algebraic Bethe ansatz method can be applied to the elliptic
quantum group Eτ,η(so3). Similarly to Tarasov’s implementation of the algebraic Bethe
ansatz to the Izergin–Korepin model, the creation operators for the Bethe vectors are not
simple products of the Lax matrix entries but are constructed through a recurrence relation.
This analogy comes from the fact that the Izergin–Korepin R-matrix, although nondynamical,
has nonzero entries at the same positions as the elliptic dynamical R-matrix considered here.
For the simplest highest weight module available we gave the Bethe vectors, and derived the
Bethe equations as well as the eigenvalues of the transfer matrix. Detailed proofs of these
results will be published elsewhere [14].

Acknowledgments

We wish to thank Petr Petrovich Kulish for illuminating discussions. This work was supported
by the project POCI/MAT/58452/2004; in addition to that Z Nagy benefited from the FCT
grant SFRH/BPD/25310/2005 and N Manojlović acknowledges additional support from
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